TUBS Logo Solid-State Theory Division (AG FKT)
Institute for Theoretical Physics, Technical University of Braunschweig









Olesia Krupnitska Institute for Theoretical Physics
Technical University Braunschweig
Mendelssohnstr. 3
38106 Braunschweig

Tel: +49 531 391 5184
FAX: +49 531 391 5833
Email: olesia.krupnitska[AT]tu-bs.de ([AT]=@)
WWW: http://www.fkt.tu-bs.de

My name is Olesia Krupnitska and I am currently working as a Postdoctoral researcher in AG-FKT
at the Institute of Theoretical Physics of the Technical University of Braunschweig.

Research Interests
My research interests are in the area of frustrated quantum magnets, mainly antiferromagnetic Heisenberg models and related systems, low-dimensional frustrated systems and the corresponding solid-state realizations.

Among the numerical and analytical techniques that I have been using are: Numerical Diagonalization (Exact, Lanczos), Many-Body Pertubation Theory, Jordan-Wigner-Fermionization.

Brief CV

Academic Employment

since April 2022
Postdoctoral Researcher, Technical University of Braunschweig, Germany

April 2020 - March 2021
Postdoctoral Researcher, Pavol Jozef Šafárik University in Košice, Slovakia

since November 2016
Researcher, Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv


Ph.D. in Theoretical Physics, ICMP of NASU, Lviv, Ukraine

M.S. in Theoretical Physics, Ivan Franko National University of Lviv, Ukraine


1 J. Strečka, K. Karl'ová, and O. Krupnitska
On the failure of effective-field theory in predicting a spurious spontaneous ordering and phase transition of Ising nanoparticles, nanoislands, nanotubes and nanowires, Physica E 133, 114805 (2021).
DOI: 10.1016/j.physe.2021.114805
2 J. Strečka, O. Krupnitska, and J. Richter
Investigation of entanglement measures across the magnetization process of a highly frustrated spin-1/2 Heisenberg octahedral chain as a new paradigm of the localized-magnon approach, EPL 32, 30004 (2020).
DOI: 10.1209/0295-5075/132/30004
3 O. Krupnitska
Frustrated quantum Heisenberg double-tetrahedral and octahedral chains at high magnetic fields, Phys. Rev. B 102, 064403 (2020).
DOI: 10.1103/PhysRevB.102.064403
4 J. Richter, O. Krupnitska, V. Baliha, T. Krokhmalskii, and O. Derzhko
Thermodynamic properties of Ba2CoSi2OCl2 in strong magnetic field: Realization of flat-band physics in a highly frustrated quantum magnet, Phys. Rev. B 97, 024405 (2018).
DOI: 10.1103/PhysRevB.97.024405
5 O. Krupnitska, J. Richter, and O. Derzhko
Localized-magnon chains and interchain interactions, Acta Physica Polonica A 132, 1234 (2017).
DOI: 10.12693/APhysPolA.132.1234
6 O. Derzhko, O. Krupnitska, B. Lisnyi, and J. Strečka
Effective low-energy description of almost Ising-Heisenberg diamond chain, EPL 112, 37002-6 (2015).
DOI: 10.1209/0295-5075/112/37002
7 O. Krupnitska
The influence of the Heisenberg exchange interaction anisotropy on magnetization process of the frustrated diamond chain in a strong magnetic field, Ukraininan Journal of Physics 60, 1243 (2015).
DOI: 10.15407/ujpe60.12.1243
8 J. Richter, O. Krupnitska, T. Krokhmalskii and O. Derzhko
Frustrated diamond-chain quantum XXZ Heisenberg antiferromagnet in a magnetic field, J. Magn. Magn. Mater. 379, 39 (2015).
DOI: 10.1016/j.jmmm.2014.11.082
9 O. Derzhko, J. Richter, O. Krupnitska, and T. Krokhmalskii
The square-kagome quantum Heisenberg antiferromagnet at high magnetic fields: The localized-magnon paradigm and beyond, Low Temperature Physics 40, 513 (2014).
DOI: 10.1063/1.4881184
10 O. Derzhko, J. Richter, O. Krupnitska, and T. Krokhmalskii
Frustrated quantum Heisenberg antiferromagnets at high magnetic fields: Beyond the flat-band scenario, Phys. Rev. B 88, 094426 (2013).
DOI: 10.1103/PhysRevB.88.094426
11 O. Derzhko, J. Richter, and O. Krupnitska
Semiquantitative theory for high-field low-temperature properties of distorted diamond spin chain, Condensed Matter Physics (L'viv) 15, 43702 (2012).
DOI: 10.5488/CMP.15.43702

The sole responsibility for the content of this page is with the person named.